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1. Problem
 Accurate annotation of cracks is crucial for supervised learning, but 

identifying thin cracks can be challenging;
 Simple yields effective annotation of crack curves can  reduce 

annotation costs;
 little is known about how annotation errors in training data affect the 

accuracy of detectors trained on them.

4 Result
After training the UNet model on the training data with synthetic errors, 

we evaluate its performance on error-free images from the test set.
 Effects of Feature-independent Errors. 

 Effects of Feature-dependent Errors. 

 Effects of Mix of Under- and Over-annotation.

 Effects of Polyline Annotation

 5.Examples

6.Summary/Conclusion

 We defined assessed three types of errors that affect crack 
detection accuracy.

 We experimentally found that under-annotation has a more 
significant negative impact than over-annotation. 

 We also found combination of under- and over-annotation errors 
tend to improve accuracy.

 We finally found that polyline annotation is an effective way to 
reduce annotation costs while maintaining model detection 
accuracy.

Table 1. F1-scores on error-free test images of different DNN 
models trained with training data having different levels of 
annotation errors.

• Detection performance deteriorates with 
increasing levels of errors, but the impact is 
modest and tolerable with low error levels.

• Comparing under- and over-annotation errors, 
the impact is smaller for over-annotation.

• The impact of 30% error for over-annotation is 
mostly the same as that of 20% error for under-
annotation

Table 2. F1-scores achieved by diverse DNN models trained 
with various types of feature-dependent noisy labels under 
different error levels.

• When compared to error-free cases, 40% under-
annotation errors lead to a considerable 
reduction in F1-scores for HRNet, CrackFormer, 
DeepCrack, and UNet, with a reduction of 17.3%, 
21.5%, 29.5%, and 36.2%, respectively.

• 40% over-annotation errors only result in a minor 
decrease of 3.9%, 5.1%, 7.3%, and 9.0%, 
respectively.

Table 3.  F1-scores of the UNet model trained with data 
having dif_x0002_ferent ratios of under- and over-annotation 
errors whose total error level is 30%.

Table 4.  F1-scores of the UNet model trained with data 
having dif_x0002_ferent ratios of under- and over-annotation 
errors whose total error level is 40%.

• In the case of feature-independent errors, the 
ratio of under- and over-annotation has no 
significant impact on detection accuracy, while 
the total error level is the main factor.

• In the case of feature-dependent errors, the ratio 
of under- and over-annotation has a significant 
impact. 

• A combination of under- and over-annotation 
errors is likely to improve accuracy.

• it is crucial for annotators to ensure that under-
annotation errors occur less frequently than over-
annotation errors.

Table 5.  F1-scores achieved by the four methods trained on 
polyline annotation with different compression rates.

• the accuracy of the models decreases 
proportionally to the compression rate; their 
ranking remains unchanged regardless of the 
compression rate.

• It should be noted that even at a compression 
rate of 25%, all the models show only a modest 
decrease in accuracy. 
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2. Categorization:
 Feature-independent error emerge purely randomly annotation 

errors that emerge purely randomly;
 Feature-dependent annotation error usually results from some 

image structures;
 Polyline annotation error occurs when annotators do not provide the 

precise trace of a crack. 
3. Synthesizing Noises:
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Figure 1. Examples of detection result. The first row is the image, the second row is the label and the 
third row is the output from our model.

512×512 pixel patches;
2,341 and 479 positive patches for training 
and testing, respectively;
Error levels veries from 10% to 50% in 
patch-wise fashion.
Mean squared error (MSE) loss 

Experimental Configuration

Implementation:Pytorch;
Augmentation: random 360-degree rotation 
and random flipping;
Training epoch: 80;
Learning rate: MultiStepLR;
Optimizer: Adam 
Baseline models:UNet[2], HRNet-W18-C[3], 
DeepCrack[4], and Crackformer[5]
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